martes, 21 de septiembre de 2021

analisis matemàtic: continuitat

Continuitat:

[As][ s > 0 ==> [Ed][ d > 0 & ( Si |x+(-a)| < d ==> |f(x)+(-1)·f(a)| < s ) ] ]

[As][ s > 0 ==> [Ed][ d > 0 & ( Si |h| < d ==> |f(a+h)+(-1)·f(a)| < s ) ] ]

[As][ s > 0 ==> [Ed][ d > 0 & ( Si |(-h)| < d ==> |f(a+(-h))+(-1)·f(a)| < s ) ] ]


lim[a-->h][ | ln(1+(h/a)) | ] = ln(2) >] s

ln(x) no és contínua a x = 0

lim[a-->h][ | (-h)/((a+h)·a) | ] = (1/2)·oo >] s

(1/x) no és contínua a x = 0

lim[a-->h][ | 0^{2}/((a+h)·a) | ] = (1/2) >] s 

(x/x) no és contínua a x = 0


lim[a-->h][ | 0^{2}/((a+h+(-a))·(a+(-a)) | ] = 1 >] s 

( (x+(-a))/(x+(-a)) ) no és contínua a x = a

lim[a-->h][ | 0^{2}/(((-a)+h+a)·((-a)+a)) | ] = 1 >] s 

( (x+a)/(x+a) ) no és contínua a x = (-a)


Si f(x) es contínua ==> ( f(x) )^{n} és contínua.

lim[h-->0][ | ( f(x)+h )^{n}+(-1)·( f(x) )^{n} | ] = 0 < s

 

Sigui: [Ax][ 0 [< ( f(x) )^{n} [< |x| ] ==>

f(0) = 0

0 [< f(1) [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+(-1)| [< d ==>

|f(1+h)+(-1)·f(1)| [< | |1+h|^{(1/n)}+(-1)·f(1) | = ...

... |(1+h)^{(1/n)}+(-1)·f(1)| [< ...

... |(1+h)+(-1)·f(1)| = |f(1)+(-1)·(1+h)| < |1+(-1)+(-h)| = |(-h)| = |x+(-1)| [< d [< s

f(x) no és contínua en x = 1

0 [< f(-1) [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+1| [< d ==>

|f( (-1)+(-h) )+(-1)·f(-1)| [< | |(-1)+(-h)|^{(1/n)}+(-1)·f(-1) | = ...

... |(1+h)^{(1/n)}+(-1)·f(-1)| [< ...

... |(1+h)+(-1)·f(-1)| = |f(-1)+(-1)·(1+h)| < |1+(-1)+(-h)| = |(-h)| = |x+1| [< d [< s

f(x) no és contínua en x = (-1)


Si f(x) es contínua ==> |f(x)| és contínua.

Si f(x) >] 0 ==> lim[h-->0][ | |f(x)+h|+(-1)·|f(x)| | ] = 0 < s

Si f(x) [< 0 ==> lim[h-->0][ | |f(x)+(-h)|+(-1)·|f(x)| | ] = 0 < s


Sigui: [Ax][ 0 [< |f(x)| [< |x| ] ==>

f(0) = 0

0 [< |f(1)| [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+(-1)| [< d ==>

| |f(1+h)|+(-1)·|f(1)| | [< | |1+h|+(-1)·|f(1)| | = ...

... | |f(1)|+(-1)·|1+h| | < | 1+(-1)·|1+h| | = |(-h)| = |x+(-1)| [< d [< s

f(x) no és contínua en x = 1

0 [< |f(-1)| [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+1| [< d ==>

| |f((-1)+(-h))|+(-1)·|f(-1)| | [< | |(-1)+(-h)|+(-1)·|f(-1)| | = ...

... | |f(-1)|+(-1)·|(-1)+(-h)| | < | 1+(-1)·|(-1)+(-h)| | = |(-h)| = |x+1| [< d [< s

f(x) no és contínua en x = (-1)


[Ax][ 0 [< ( f(x) )^{n} [< |x| ]

f(x) = ( |x|^{2}/(|x+1|·|x+(-1)|) )^{(1/n)}

[Ax][ 0 [< |f(x)| [< |x| ]

f(x) = ( x^{2}/( (x+1)·(x+(-1)) ) )

|x^{2}| = |x·x| = |x|·|x| = |x|^{2}

No hay comentarios:

Publicar un comentario