stroniken
jueves, 30 de octubre de 2025
óptica-física y psico-neurología-extraterrestre y arte-matemático y análisis-matemático y termodinámica
domingo, 26 de octubre de 2025
electro-magnetismo y mecánica-ingeniería y ecuaciones-en-derivadas-parciales y mecánica-física y análisis-matemático-6 y medicina
Examen de electro-magnetismo:
Principio:
E(x,y,z) = qk·(1/r)^{3}·a·< x^{2},y^{2},z^{2} >
E(yz,zx,xy) = qk·(1/r)^{4}·a^{2}·< (yz)^{2},(zx)^{2},(xy)^{2} >
Ley:
div[ E(x,y,z) ] = ?
Anti-div[ E(yz,zx,xy) ] = ?
Ley:
Anti-Potencial[ E(x,y,z) ] = ?
Potencial[ E(yz,zx,xy) ] = ?
Ley: [ de corrección del examen ]
div[ E(x,y,z) ] = d_{x(yz)}^{2}[ Anti-Potencial[ E(x,y,z) ] ]
Anti-div[ E(yz,zx,xy) ] = d_{x(yz)}^{2}[ Potencial[ E(yz,zx,xy) ] ]
Ley:
R·d_{t}[q(t)]+(-C)·p(t) = W·f(ut)·e^{ut}
p(t) = W·( 1/(uR·d_{ut}[f(ut)]+(-C)·f(ut)) )·f(ut)·e^{ut}
q(t) = W·( ut /o(ut)o/ (uR·f(ut)+(-C)·int[ f(ut) ]d[ut]) ) [o(ut)o] f(ut) [o(ut)o] e^{ut}
Ley:
R·d_{t}[q(t)]+C·p(t) = W·f(ut)·e^{(-1)·ut}
p(t) = W·( 1/((-u)·R·d_{ut}[f(ut)]+C·f(ut)) )·f(ut)·e^{(-1)·ut}
q(t) = W·( ut /o(ut)o/ ((-u)·R·f(ut)+C·int[ f(ut) ]d[ut]) ) [o(ut)o] f(ut) [o(ut)o] e^{(-1)·ut}
Ley:
Sea ( d_{t}[ I_{cx} ] = 0 & d_{t}[ I_{cy} ] = 0 ) ==>
Si d[M_{1}(t)] = (1/2)·mgx·(1/s)^{2}·cos(nw)·d[w] ==>
M_{1}(t) = (1/2)·mg·(x/n)·(1/s)^{2}·sin(nw)
Si d[ d[M_{2}(t)] ] = mg·(1/s)^{2}·sin(nw)·cos(nw)·d[y]d[w] ==>
M_{2}(t) = mg·(y/n)·(1/s)^{2}·(1/2)·( sin(nw) )^{2}
M_{1}(t) = M_{2}(t) <==> ( w(t) = (1/n)·arc-sin( I_{cx}/I_{cy} ) & I_{cx} [< I_{cy} )
Ley:
Sea d_{t}[ I_{c} ] = 0 ==>
Si d[M_{1}(t)] = (1/2)·I_{c}·u^{2}·cos(nw)·d[w] ==>
M_{1}(t) = (1/2)·I_{c}·u^{2}·(1/n)·sin(nw)
Si d[ d[M_{2}(t)] ] = I_{c}·u^{2}·(1/x)·sin(nw)·cos(nw)·d[x]d[w] ==>
M_{2}(t) = I_{c}·u^{2}·ln(ax)·(1/n)·(1/2)·( sin(nw) )^{2}
M_{1}(t) = M_{2}(t) <==> ( w(t) = (1/n)·arc-sin( ( 1/ln( aI_{c}·(1/(md)) ) ) ) & aI_{c} >] md·e )
Ley: [ del calor electro-magnético ]
div[ E_{e}(x,y,t) ] = (-2)·(1/c)·B_{e}(x,y,t)
Deducción:
E_{e}(x,y,t)+int[ B_{e}(x,y,t) ]d[t] = 0 = m·d_{tt}^{2}[ < x,y > ]
x(t) = ct·( cos(w) )^{2}
y(t) = ct·( sin(w) )^{2}
div[ E_{e}(x,y,t) ]+div[ inr[ B_{e}(x,y,t) ]d[t] ] = 0^{2}
div[ int[ B_{e}(x,y,t) ]d[t] ] = ( 1/(d[x]+d[y]) )·(d[x]+d[y]) [o] div[ int[ B_{e}(x,y,t) ]d[t] ]
div[ E_{e}(x,y,t) ]+2·(1/c)·B_{e}(x,y,t) = 0^{2}
div[ E_{e}(x,y,t) ] = (-2)·(1/c)·B_{e}(x,y,t)
Ley: [ del calor gravito-magnético ]
div[ E_{g}(x,y,t) ] = (-2)·(1/c)·B_{g}(x,y,t)
Teorema:
d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = (-2)·(1/c)·d_{t}[u(x,y,t)]
u(x,y,0) = H(ax,ay)
u(x,y,(1/u)) = K(ax,ay)
u(x,y,t) = ( (1+(-1)·ut)·H(ax,ay)+ut·K(ax,ay) || 1 )·e^{ax+ay+(-1)·act || 0}
Teorema:
d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = 2·(1/c)·d_{t}[u(x,y,t)]
u(x,y,0) = H(ax,ay)
u(x,y,(1/u)) = K(ax,ay)
u(x,y,t) = ( (1+(-1)·ut)·H(ax,ay)+ut·K(ax,ay) || 1 )·e^{ax+ay+act || 0}
Teorema:
d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = (-2)·(1/c)·d_{t}[u(x,y,t)]
u(0,0,t) = f(ut)
u(p,q,t) = g(ut)
u(x,y,t) = ...
... ( (1/2)·( (1+(-1)·(x/p))·f(ut)+(1+(-1)·(y/q))·f(ut) )+(1/2)·( (x/p)·g(ut)+(y/q)·g(ut) ) || 1 )·...
... e^{ax+ay+(-1)·act || 0}
Teorema:
d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = 2·(1/c)·d_{t}[u(x,y,t)]
u(0,0,t) = f(ut)
u(p,q,t) = g(ut)
u(x,y,t) = ...
... ( (1/2)·( (1+(-1)·(x/p))·f(ut)+(1+(-1)·(y/q))·f(ut) )+(1/2)·( (x/p)·g(ut)+(y/q)·g(ut) ) || 1 )·...
... e^{ax+ay+act || 0}
Teorema:
d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = (-2)·(1/c)·d_{t}[u(x,y,t)]
u(0,q,t) = f(ut)
u(p,0,t) = g(ut)
u(x,y,t) = ?
Teorema:
d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = 2·(1/c)·d_{t}[u(x,y,t)]
u(0,q,t) = f(ut)
u(p,0,t) = g(ut)
u(x,y,t) = ?
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,0) = H(ax,ay)
d_{t}[u(x,y,0)] = 0
u(x,y,t) = ...
... (1/2)·( e^{ax+ay+ac·it || ln( H(ax,ay) )+act}+e^{ax+ay+ac·it || ln( H(ax,ay) )+(-1)·act} )
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,0) = H(ax,ay)
d_{t}[u(x,y,0)] = 0
u(x,y,t) = ...
... (1/2)·( e^{ax+ay+act || ln( H(ax,ay) )+act}+e^{ax+ay+act || ln( H(ax,ay) )+(-1)·act} )
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(0,y,0) = F(ay)
u(r,y,0) = G(ay)
d_{t}[u(x,y,0)] = 0
u(x,y,t) = ?
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(0,y,0) = F(ay)
u(r,y,0) = G(ay)
d_{t}[u(x,y,0)] = 0
u(x,y,t) = ?
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,0) = 0
d_{t}[u(x,y,0)] = h(ax,ay)
u(x,y,t) = (1/2)·sum[k = 1]-[oo][ ...
... int[h(ax,ay)+(-1)·act·0 || (4t)^{(1/2)}]-[h(ax,ay)+act·0 || (4t)^{(1/2)}][ w ]d[w] ]·e^{ax+ay+ac·it || 0}
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,0) = 0
d_{t}[u(x,y,0)] = h(ax,ay)
u(x,y,t) = (1/2)·sum[k = 1]-[oo][ ...
... int[h(ax,ay)+(-1)·act·0 || (4t)^{(1/2)}]-[h(ax,ay)+act·0 || (4t)^{(1/2)}][ w ]d[w] ]·e^{ax+ay+act || 0}
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,0) = 0
d_{t}[u(0,y,0)] = ac·f(ay)
d_{t}[u(r,y,0)] = ac·g(ay)
u(x,y,t) = ?
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,0) = 0
d_{t}[u(0,y,0)] = ac·f(ay)
d_{t}[u(r,y,0)] = ac·g(ay)
u(x,y,t) = ?
Motores a combustión de explosión acotada:
Ley:
Sea d[I_{c}] = (1/s)^{2}·Mrv·d[t] ==>
Si (I_{c}/2)·d_{t}[w]^{2} = qgh·cos(ut) ==>
x(t) = (M/(md))·(1/s)^{2}·rvt
w(t) = (1/u)·( 2qgh·(1/(Mrv))·us^{2}·( ln(ut) [o(ut)o] sin(ut) ) )^{[o(ut)o] (1/2)}
(1/u) [< t [< (pi/u)
Ley:
Sea d[I_{c}] = (1/s)^{2}·Mrgt·d[t] ==>
Si (I_{c}/2)·d_{t}[w]^{2} = qgh·sin(ut) ==>
x(t) = (M/(md))·(1/s)^{2}·rg·(1/2)·t^{2}
w(t) = (1/u)·( 4qgh·(1/(Mrg))·(us)^{2}·( (1/(ut)) [o(ut)o] cos(ut) ) )^{[o(ut)o] (1/2)}
(1/u) [< t [< (pi/(2u))
Teorema:
( cos(w) )^{4}+(-1)·( sin(w) )^{4}+i·sin(2w) = e^{2iw}
Teorema:
( cos(w) )^{4}+( sin(w) )^{4}+(1/2)·( sin(2w) )^{2} = 1
Ley:
Sea ( d_{t}[ I_{cx} ] = 0 & d_{t}[ I_{cy} ] = 0 ) ==>
Si d[ d[M(t)] ] = qg·(1/s)^{2}·sin(nw)·cos(nw)·d[x]d[w] ==>
M(t) = qg·(x/n)·(1/s)^{2}·(1/2)·( sin(nw) )^{2}
(I_{c}/2)·d_{t}[w]^{2} = qgx·(1/(ns))^{2}·(1/4)·( nw+(-1)·(1/2)·sin(2nw) )
x(t) = I_{c}·(1/(md))
w(t) = (1/n)·Anti-[ ( s /o(s)o/ ( (1/4)·s^{2}+(1/8)·cos(2s) ) )^{[o(s)o](1/2)}]-( ...
... ( (1/(md))·qg )^{(1/2)}·(1/s)·t )
Ley:
Sea d_{t}[ I_{c} ] = 0 ==>
Si d[ d[M(t)] ] = I_{c}·u^{2}·(1/x)·sin(nw)·cos(nw)·d[x]d[w] ==>
M(t) = I_{c}·u^{2}·ln(ax)·(1/n)·(1/2)·( sin(nw) )^{2}
(I_{c}/2)·d_{t}[w]^{2} = I_{c}·u^{2}·ln(ax)·(1/n)^{2}·(1/4)·( nw+(-1)·(1/2)·sin(2nw) )
x(t) = I_{c}·(1/(md))
w(t) = (1/n)·Anti-[ ( s /o(s)o/ ( (1/4)·s^{2}+(1/8)·cos(2s) ) )^{[o(s)o](1/2)}]-( ...
... ( ln( aI_{c}·(1/md) ) )^{(1/2)}·ut )
Ecuaciones de densidades:
Leyes de agua y aceite:
Ley:
d_{x}[u(x,y)]+d_{y}[u(x,y)] = (m/V)·xy
u(0,y) = m·F(ay)
u(r,y) = m·G(ay)
u(x,y) = ( (1+(-1)·(x/r))·F(ay)+(x/r)·G(ay) || 1 )·( (m/(4V))·yx^{2} || (m/(4V))·xy^{2} || m )
Ley:
d_{x}[u(x,y)]+d_{y}[u(x,y)] = (-V)·m·( 1/(xy) )^{2}
u(x,0) = m·F(ax)
u(x,r) = m·G(ax)
u(x,y) = ( (1+(-1)·(y/r))·F(ax)+(y/r)·G(ax) || 1 )·( (V/2)·( m/(xy^{2}) ) || (V/2)·( m/(yx^{2}) ) || m )
Ley: [ de ola de mar ]
d_{x}[u(x,y)]+d_{y}[u(x,y)] = m·(1/a)·(1/(xy))
u(0,y) = m·F(ay)
u(r,y) = m·G(ay)
u(x,y) = ( (1+(-1)·(x/r))·F(ay)+(x/r)·G(ay) || 1 )·( (1/2)·(m/(ay))·ln(ax) || (1/2)·(m/(ax))·ln(ay) || m )
Ley:
d_{x}[u(x,y)]+d_{y}[u(x,y)]+a·u(x,y) = (m/V)·xy
u(0,y) = m·F(ay)
u(r,y) = m·G(ay)
u(x,y) = ( (1+(-1)·(x/r))·F(ay)+(x/r)·G(ay) || 1 )·....
... ( (m/(6V))·yx^{2} || (m/(6V))·xy^{2} || (1/(3V))·(m/a)·xy || m )
Ley:
d_{x}[u(x,y)]+d_{y}[u(x,y)]+a·u(x,y) = (-V)·m·( 1/(xy) )^{2}
u(x,0) = m·F(ax)
u(x,r) = m·G(ax)
u(x,y) = ( (1+(-1)·(y/r))·F(ax)+(y/r)·G(ax) || 1 )·...
... ( (V/3)·( m/(xy^{2}) ) || (V/3)·( m/(yx^{2}) ) || (-1)·(V/3)·(m/a)·( 1/(xy) )^{2} || m )
Arte:
Sea u(x) = e^{(-x)} ==>
[Ax][ f(a)·(1/u)^{0} = f(a) ]
[Ex][ (-1)^{k}·(k+(-1))!·d_{a...a}^{k}[f(a)]·(1/u)^{k} = d_{a...a}^{k}[f(a)] ]
Exposición:
x = (-1)·(1/k)·ln( (-1)^{k}·(k+(-1))! )
Sea z(x) = e^{(-x)}+a ==>
Sea u(x) = e^{(-x)} ==>
d[u] = d[z]
s(u) = 1
d[u] = d[s(u)] = d[1] ==>
Caso 1:
int[x = 0]-[1][ f(a)/(a+(-z)) ]d[z] = int-int[ (-1)·d_{a}[f(a)]·(1/u) ]d[u]d[a] = f(a)
int[ (-1)·d_{a}[f(a)]·(1/u) ]d[u] = d_{a}[f(a)]
(-1)·d_{a}[f(a)]·(1/z) = d_{a}[f(a)]
Caso 2:
int-int[x = 0]-[1][ f(a)/(a+(-z))^{2} ]d[z]d[z] = ...
... int-int-int-int[ d_{aa}^{2}[f(a)]·(1/u)^{2} ]d[u]d[u]d[a]d[a] = f(a)
int-int[ d_{aa}^{2}[f(a)]·(1/u)^{2} ]d[u]d[u] = d_{aa}^{2}[f(a)]
d_{aa}^{2}[f(a)]·(1/z)^{2} = d_{aa}^{2}[f(a)]
Caso 3:
int-int-int[x = 0]-[1][ 2·f(a)/(a+(-z))^{3} ]d[z]d[z]d[z] = ...
... int-int-int-int-int-int[ (-1)·2·d_{aaa}^{2}[f(a)]·(1/u)^{3} ]d[u]d[u]d[u]d[a]d[a]d[a] = f(a)
int-int-int[ (-1)·2·d_{aaa}^{3}[f(a)]·(1/u)^{3} ]d[u]d[u]d[u] = d_{aaa}^{3}[f(a)]
(-1)·2·d_{aaa}^{3}[f(a)]·(1/u)^{3} = d_{aaa}^{3}[f(a)]
Artes: [ de series de Laurent ]
Sea z(x) = e^{(-x)} ==>
Exposición:
Arte:
[Ex][ e^{x} = 1+sum[k = 1]-[oo][ (-1)^{k}·(1/k)·( xe^{x} )^{k} ] ]
[Ex][ e^{(-x)} = 1+sum[k = 1]-[oo][ (1/k)·( xe^{(-x)} )^{k} ] ]
Arte:
[Ex][ ( 1/(1+(-x)) ) = 1+sum[k = 1]-[oo][ k!·(1/k)·( xe^{(-x)} )^{k} ] ]
[Ex][ (-1)·( 1/(1+(-x))^{2} ) = (-1)+sum[k = 1]-[oo][ (-1)^{k+1}·(k+1)!·(1/k)·( xe^{(-x)} )^{k} ] ]
Arte:
[Ex][ e-pos[m](x) = m+sum[k = 1]-[oo][ (-1)^{k}·( 1+m·(1/k) )·( xe^{x} )^{k} ] ]
[Ex][ e-neg[m](x) = (-m)+sum[k = 1]-[oo][ (-1)^{k}·( 1+(-m)·(1/k) )·( xe^{x} )^{k} ] ]
Arte:
[Ex][ octopus(x) = 1+sum[k = 1]-[oo][ (-1)^{k}·(k+1)!·(1/k)·( xe^{x} )^{k} ] ]
[Ex][ d_{x}[ octopus(x) ] = 2+sum[k = 1]-[oo][ (-1)^{k}·(k+2)!·(1/k)·( xe^{x} )^{k} ] ]
Arte:
[Ex][ ln(1+x) = (-x)·e^{x}+sum[k = 2]-[oo][ (-1)·k!·(1/k)^{2}·( xe^{x} )^{k} ] ]
[Ex][ ln(1+(-x)) = xe^{(-x)}+sum[k = 2]-[oo][ (-1)^{k+1}·k!·(1/k)^{2}·( xe^{(-x)} )^{k} ] ]
(-0) = 0 = ln(1+0) = ln(1)
Enfermedad de centro de dos mandamientos duales a densidad de carga constante:
Ley:
d_{x}[f(x)] = qaie^{axi}
d_{x}[g(x)] = (-1)·qaie^{(-1)·ayi}
s(y) = x
Robar la intimidad,
sin conexión de luz eléctrica:
No puede duchar-se con cortina opaca.
Ley:
d_{x}[f(x)] = iqa·cos(ax)
d_{x}[g(x)] = (-1)·qa·sin(ax)
f(x)+g(x) = qe^{axi}
Robar la libertad,
sin conexión de luz eléctrica:
No puede salir lloviendo o nublado.
Ley:
d_{x}[f(x)] = (-i)·qa·cos(ax)
d_{x}[g(x)] = (-1)·qa·sin(ax)
f(x)+g(x) = qe^{(-1)·axi}
Terapia con constructor:
Ley:
d_{x}[f(x)] = qae^{ax}
d_{x}[g(x)] = (-1)·qae^{(-1)·ay}
s(y) = x
No robar la intimidad,
con visita de algoritmo interno:
Ley:
d_{x}[f(x)] = qa·cosh(ax)
d_{x}[g(x)] = qa·sinh(ax)
f(x)+g(x) = qe^{ax}
No robar la libertad,
con visita de algoritmo externo:
Ley:
d_{x}[f(x)] = (-1)·qa·cosh(ax)
d_{x}[g(x)] = qa·sinh(ax)
f(x)+g(x) = qe^{(-1)·ax}
Enfermedad de centro de dos mandamientos duales a densidad de carga variable:
Ley:
d_{x}[f(x)] = d_{x}[q(x)]·ie^{axi}
d_{x}[g(x)] = (-1)·d_{x}[q(x)]·ie^{(-1)·ayi}
s(y) = x
Deducción:
int[ d_{x}[q(x)] ]d[x] [o(x)o] int[ ie^{axi} ]d[x] = int[ d_{x}[q(x)] ]d[x] [o(ax)o] int[ ie^{axi} ]d[ax]
Ley:
d_{x}[f(x)] = i·d_{x}[q(x)]·cos(ax)
d_{x}[g(x)] = (-1)·d_{x}[q(x)]·sin(ax)
f(x)+g(x) = q(x) [o(ax)o] e^{axi}
Ley:
d_{x}[f(x)] = (-i)·d_{x}[q(x)]·cos(ax)
d_{x}[g(x)] = (-1)·d_{x}[q(x)]·sin(ax)
f(x)+g(x) = q(x) [o(ax)o] e^{(-1)·axi}
Terapia con constructor:
Ley:
d_{x}[f(x)] = d_{x}[q(x)]·e^{ax}
d_{x}[g(x)] = (-1)·d_{x}[q(x)]·e^{(-1)·ay}
s(y) = x
Ley:
d_{x}[f(x)] = d_{x}[q(x)]·cosh(ax)
d_{x}[g(x)] = d_{x}[q(x)]·sinh(ax)
f(x)+g(x) = q(x) [o(ax)o] e^{ax}
Ley:
d_{x}[f(x)] = (-1)·d_{x}[q(x)]·cosh(ax)
d_{x}[g(x)] = d_{x}[q(x)]·sinh(ax)
f(x)+g(x) = q(x) [o(ax)o] e^{(-1)·ax}
Principio: [ de oftalmología de imagen y sonido ]
Vista sana:
d_{x}[q( (pi/(2a)) )]·d_{y}[p( (-1)·(pi/(2a)) )]+d_{x}[p( (pi/a) )]·d_{y}[q( (0/a) )] = pqa^{2}
Oída sana:
d_{x}[q( (pi/(2a))·i )]·d_{y}[p( (-1)·(pi/(2a))·i )]+d_{x}[p( (pi/a)·i )]·d_{y}[q( (0/a)·i )] = pqa^{2}
Principio: [ de definición de lentes ]
Lentes de Miopía:
f(ax) = (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
Lentes de Hipermetropía:
g(ay) = ( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
Ley: [ de gafas de miopía ]
q(x) = qe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] sin(ax) [o(ax)o] f(ax)} = qe^{sin(ax)}
p(x) = pe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] cos(ax) [o(ax)o] f(ax)} = pe^{cos(ax)}
Ley: [ de gafas de hipermetropía ]
p(y) = pe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] sin(ay) [o(ay)o] g(ay)} = pe^{sin(ay)}
q(y) = qe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] cos(ay) [o(ay)o] g(ay)} = qe^{cos(ay)}
Ley: [ de sonotone de miopía ]
q(x) = qe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] sinh(ax) [o(ax)o] f(ax)} = qe^{sinh(ax)}
p(x) = pe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] i·cosh(ax) [o(ax)o] f(ax)} = pe^{i·cosh(ax)}
Ley: [ de sonotone de hipermetropía ]
p(y) = pe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] sinh(ay) [o(ay)o] g(ay)} = pe^{sinh(ay)}
q(y) = qe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] i·cosh(ay) [o(ay)o] g(ay)} = qe^{i·cosh(ay)}
Principio: [ de ecuación de la lente ]
Miopía:
d_{z}[f(z,x)]+d_{x}[f(z,x)] = d_{z}[p(z)]+a·(-1)·(1/(ax))^{n}
f(z,x) = p(z)+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
Hipermetropía:
d_{z}[g(z,y)]+d_{y}[g(z,y)] = d_{z}[q(z)]+a·(1/(ay))^{n}
g(z,y) = q(z)+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
Ley:
d_{z}[f(z,x)]+d_{x}[f(z,x)] = a·( 1+(-1)·(1/(ax))^{n} )
f(z,x) = az+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
d_{z}[g(z,x)]+d_{x}[g(z,x)] = a·( 1+(1/(ax))^{n} )
g(z,x) = az+( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
f(z,x)+g(z,x) = n·(n+1) <==> z = (1/(2a))·n·(n+1)
Si n = 2k ==> (1/2)·n·(n+1) € N
Si n = 2k+1 ==> (1/2)·n·(n+1) € N
Deducción:
d_{z}[f(z,x)] = d_{z}[ az+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...
... d_{z}[ az ]+d_{z}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...
... d_{z}[az]+0 = d_{z}[az] = a·d_{z}[z] = a
d_{x}[f(z,x)] = d_{x}[ az+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...
... d_{x}[ az ]+d_{x}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...
... 0+d_{x}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...
... d_{x}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...
... a·d_{ax}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...
... a·(-1)·d_{ax}[ ( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = a·(-1)·(1/(ax))^{n}
Ley:
d_{z}[f(z,y)]+d_{y}[f(z,y)] = a·( 2+(-1)·(1/(ay))^{n} )
f(z,y) = 2az+(-1)·( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
d_{z}[g(z,y)]+d_{y}[g(z,y)] = a·( 2+(1/(ay))^{n} )
g(z,y) = 2az+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
( f(z,y)+g(z,y) )^{(1/2)} = n·(n+1) <==> z = (1/(4a))·n^{2}·(n^{2}+2n+1)
f(z,x) = ln(az)+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
d_{z}[g(z,x)]+d_{x}[g(z,x)] = a·( (-1)·( 1/(1+(-1)·(az)) )+(-1)·(1/(ax))^{n} )
g(z,x) = ln(1+(-1)·(az))+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
f(z,x) = g(z,x) <==> z = (1/(2a))
Deducción:
ln(az) = ln(1+(-1)·(az))
az = 1+(-1)·(az)
2az = 1
z = (1/(2a))
f(z,y) = (1/2)·ln(az)+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
d_{z}[g(z,y)]+d_{y}[g(z,y)] = a·( (-1)·( 1/((3/4)+(-1)·(az)) )+(1/(ay))^{n} )
g(z,y) = ln((3/4)+(-1)·(az))+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
f(z,y) = g(z,y) <==> ( z = (1/(4a)) con raíz positiva || z = (9/(4a)) con raíz negativa )
Deducción:
(1/2)·ln(az) = ln((3/4)+(-1)·(az))
(az)^{(1/2)} = (3/4)+(-1)·(az)
az = (9/16)+(-1)·(3/2)·az+(az)^{2}
0 = (9/16)+(-1)·(5/2)·az+(az)^{2}
az = (1/2)·( (5/2)+(-1)·( (25/4)+(-1)·(9/4) )^{(1/2)} ) = (1/2)·( (5/2)+(-2) ) = (1/4)
z = (1/(4a))
az = (1/2)·( (5/2)+( (25/4)+(-1)·(9/4) )^{(1/2)} ) = (1/2)·( (5/2)+2 ) = (9/4)
z = (9/(4a))
w = 0 <==> s = (pi/2)
Ley:
Si k = j ==> sin(arw) = cos(ars)
f(w,x) = sin(arw)+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
g(s,x) = (-1)·cos(ars)+( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )
f(w,y) = (-1)·sin(arw)+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
g(s,y) = cos(ars)+(-1)·( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )
Óptica de miopía de imagen:
Sea n la dioptría ==>
d_{x}[q(x)] = (-1)·q(x)·cos(ax)·a·(ax)^{n}
d_{x}[p(x)] = p(x)·sin(ax)·a·(ax)^{n}
Operación Láser de longitud de onda x = rojo
f(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] sin(ax) }
g(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] cos(ax) }
Óptica de hipermetropía de imagen:
Sea n la dioptría ==>
d_{y}[p(y)] = p(y)·cos(ay)·a·(ay)^{n}
d_{y}[q(y)] = (-1)·q(y)·sin(ay)·a·(ay)^{n}
Operación Láser de longitud de onda y = verde
f(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1}+ay ) [o(ay)o] sin(ay) }
g(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1}+ay ) [o(ay)o] cos(ay) }
Óptica de miopía de sonido:
Sea n la dioptría ==>
d_{x}[q(x)] = (-1)·q(x)·cosh(ax)·a·(ax)^{n}
d_{x}[p(x)] = (-i)·p(x)·sinh(ax)·a·(ax)^{n}
Operación Láser de longitud de onda x = rojo
f(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] sinh(ax) }
g(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] i·cosh(ax) }
Óptica de hipermetropía de sonido:
Sea n la dioptría ==>
d_{y}[p(y)] = p(y)·cosh(ay)·a·(ay)^{n}
d_{y}[q(y)] = i·q(y)·sinh(ay)·a·(ay)^{n}
Operación Láser de longitud de onda y = verde
f(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1}+ay ) [o(ay)o] sinh(ay) }
g(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1+ay ) [o(ay)o] i·cosh(ay) }
Catarata de miopía de imagen:
d_{x}[q(x)] = (-1)·q(x)·cos(ax)·a·(ax)^{10}
d_{x}[p(x)] = p(x)·sin(ax)·a·(ax)^{10}
Operación Láser de longitud de onda x = rojo
f(x) = e^{( (1/11)·(ax)^{11}+ax ) [o(ax)o] sin(ax) }
g(x) = e^{( (1/11)·(ax)^{11}+ax ) [o(ax)o] cos(ax) }
Catarata de hipermetropía de imagen ( ceguera ):
d_{y}[p(y)] = p(y)·cos(ay)·a·(ay)^{10}
d_{y}[q(y)] = (-1)·q(y)·sin(ay)·a·(ay)^{10}
Operación Láser de longitud de onda y = verde
f(y) = e^{( (-1)·(1/11)·(ay)^{11}+ay ) [o(ay)o] sin(ay) }
g(y) = e^{( (-1)·(1/11)·(ay)^{11}+ay ) [o(ay)o] cos(ay) }
Ley: [ de Grado en Medicina Teoría Homologada ]
Matemáticas 1: Cálculo diferencial.
Química.
Matemáticas 2: Cálculo integral.
Física: Termodinámica y Cabal sanguíneo.
Espectroscopia de fluido corporal.
Teoría genética de infecciones víricas.
Teoría genética de infecciones bacteria-lógicas.
Quimioterapia de desintegración genética.
Óptica de imagen y sonido.
Psico-neurología de negación de voces esquizofrénicas.
Psico-neurología de doble mandamiento dual.
Neurología de resonancia eléctrica.
Neurología de anti-resonancia eléctrica.
Ley:
Un familiar de un matemático o físico tiene convalidada la teoría de medicina,
porque tiene ya la energía para esas o aquellas medicaciones que se derivan de la teoría,
y solo le faltan las asignaturas de practica de atención y cirugía.
Termodinámica de Medicina:
Fiebre y Termómetro:
Ley:
PV = kT
d_{P}[T(P,V)]·p = qR <==> p = ?
d_{V}[T(P,V)]·v = qR <==> v = ?
Ley:
d_{V}[P_{0}]·V^{2}+d_{P}[V_{0}]·P^{2} = kT
d_{P}[T(P,V)]·p = qR <==> p = ?
d_{V}[T(P,V)]·v = qR <==> v = ?
Ley:
d_{V}[P_{0}]·V^{2}+d_{P}[V_{0}]·P^{2} = kT
d_{PP}^{2}[T(P,V)]·p^{2} = qR <==> p = ?
d_{VV}^{2}[T(P,V)]·v^{2} = qR <==> v = ?
Ley:
PV = d_{T}[k]·T^{2}
d_{P}[T(P,V)]·p = qR <==> p = ?
d_{V}[T(P,V)]·v = qR <==> v = ?
Deducción:
d_{P}[T(P,V)] = d_{P}[ ( ( 1/d_{T}[k] )·PV )^{(1/2)} ] = ...
... (1/2)·( ( 1/d_{T}[k] )·PV )^{(-1)·(1/2)}·( V/d_{T}[k] )
martes, 21 de octubre de 2025
física-en-ingeniería y mecánica-de-fluidos y cálculo-integral-geometría y mecánica-en-física
Preliminares:
Principio:
[Ev][ d_{t}[x] = v ]
Ley:
x(t) = vt+h
Deducción:
Principio:
[Eg][ d_{tt}^{2}[x] = g ]
Ley:
Si g = 0 ==> [Ev][ d_{t}[x] = v ]
Ley:
d_{t}[x] = gt+v
x(t) = g·(1/2)·t^{2}+vt+h
Deducción:
Procedimiento en coordenadas cartesianas:
---------------------------------------------------
Principio: [ de Fuerza ]
[EF_{k}][ m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k} ] ]
Ley: [ de Impulsión ]
[Ep_{k}][ m·d_{t}[x] = sum[k = 1]-[n][ p_{k} ] ]
Deducción:
int[ m·d_{tt}^{2}[x] ]d[t] = m·int[ d_{tt}^{2}[x] ]d[t] = m·d_{t}[x]
int[ sum[k = 1]-[n][ F_{k} ] ]d[t] = sum[k = 1]-[n][ int[ F_{k} ]d[t] ] = sum[k = 1]-[n][ p_{k} ]
Ley: [ de Energía ]
[EU_{k}][ (m/2)·d_{t}[x]^{2} = sum[k = 1]-[n][ U_{k} ] ]
Deducción:
int[ m·d_{tt}^{2}[x] ]d[x] = int[ m·d_{tt}^{2}[x]·d_{t}[x] ]d[t] = (m/2)·d_{t}[x]^{2}
int[ sum[k = 1]-[n][ F_{k} ] ]d[x] = sum[k = 1]-[n][ int[ F_{k} ]d[x] ] = sum[k = 1]-[n][ U_{k} ]
Ley: [ de Potencia ]
[EN_{k}][ (m/u)·d_{t}[x]^{[o(ut)o] 2} = sum[k = 1]-[n][ N_{k} ] ]
Deducción:
int[ m·d_{tt}^{2}[x] ]d[ d_{t}[x] ] = int[ (m/u)·d_{tt}^{2}[x]^{2} ]d[ut] = (m/u)·d_{t}[x]^{[o(ut)o] 2}
int[ sum[k = 1]-[n][ F_{k} ] ]d[ d_{t}[x] ] = sum[k = 1]-[n][ int[ F_{k} ]d[ d_{t}[x] ] ] = ...
... sum[k = 1]-[n][ N_{k} ]
Fuerza constante:
Ley:
Sea F(t) = F ==>
d_{t}[x] = (F/m)·t
x(t) = (F/m)·(1/2)·t^{2}
Deducción:
Sea F(t) = F ==>
U(x) = Fx
(m/2)·d_{t}[x]^{2} = U(x)
Deducción:
U(x) = int[ F ]d[x] = F·int[ d[x] ] = Fx
(m/2)·d_{t}[x]^{2} = (m/2)·( (F/m)·t )^{2} = F·( (F/m)·(1/2)·t^{2} ) = Fx = U(x)
Ley:
Sea F(t) = F ==>
N(d_{t}[x]) = F·d_{t}[x]
(m/u)·d_{t}[x]^{[o(ut)o] 2} = N(d_{t}[x])
Deducción:
N(d_{t}[x]) = int[ F ]d[ d_{t}[x] ] = F·int[ d[ d_{t}[x] ] ] = F·d_{t}[x]
(m/u)·d_{t}[x]^{[o(ut)o] 2} = (m/u)·( (F/m)·t )^{[o(ut)o] 2} = int[ (m/u)·(F/m)^{2} ]d[ut] = ...
... F·( (F/m)·t ) = F·d_{t}[x] = N(d_{t}[x])
Fuerza lineal de carga variable:
Ley:
Sea F(t) = Itg ==>
d_{t}[y] = (1/m)·Ig·(1/2)·t^{2}
y(t) = (1/m)·Ig·(1/6)·t^{3}
Deducción:
U(y) = (1/m)·(Ig)^{2}·(1/8)·t^{4}
(m/2)·d_{t}[y]^{2} = U(y)
Deducción:
U(y) = int[ Itg ]d[y] = int[ Itg d_{t}[y] ]d[t] = int[ (1/m)·( Ig )^{2}·(1/2)·t^{3}· ]d[t] = ...
... (1/m)·( Ig )^{2}·(1/8)·t^{4}
(m/2)·d_{t}[y]^{2} = (m/2)·( ( (1/m)·Ig )·(1/2)·t^{2} )^{2} = (1/m)·( Ig )^{2}·(1/8)·t^{4} = U(y)
N(d_{t}[y]) = (1/m)·( Ig )^{2}·(1/3)·t^{3}
(m/u)·d_{t}[y]^{[o(ut)o] 2} = N(d_{t}[y])
Deducción:
N(d_{t}[y]) = int[ Itg ]d[ d_{t}[y] ] = int[ (1/m)·Itg d_{tt}^{2}[y] ]d[t] = ...
... int[ (1/m)·( Itg )^{2} ]d[t] = (1/m)·( Ig )^{2}·(1/3)·t^{3}
(m/u)·d_{t}[y]^{[o(ut)o] 2} = (m/u)·( ( (1/m)·Ig )·(1/2)·t^{2} )^{[o(ut)o] 2} = ...
... int[ (1/m)·( Ig )^{2}·t^{2} ]d[t] = (1/m)·( Ig )^{2}·(1/3)·t^{3} = N(d_{t}[y])
Fuerzas de amortiguación y de resistencia de fluido:
Horizontal:
Ley:
m·d_{tt}^{2}[x] = (-k)·x
x(t) = re^{(k/m)^{(1/2)}·it}
Deducción:
m·d_{tt}^{2}[x] = m·d_{t}[ d_{t}[x] ] = m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ] ] = ...
... m·d_{t}[ r·d_{t}[ e^{(k/m)^{(1/2)}·it} ] ] = m·d_{t}[ re^{(k/m)^{(1/2)}·it}·(k/m)^{(1/2)}·i ] = ...
... mr·(k/m)^{(1/2)}·i·d_{t}[ e^{(k/m)^{(1/2)}·it} ] = ...
... mr·( (k/m)^{(1/2)}·i )^{2} e^{(k/m)^{(1/2)}·it} = ...
... (-k)·re^{(k/m)^{(1/2)}·it} = (-k)·x
Ley
m·d_{tt}^{2}[x] = (-b)·d_{t}[x]
d_{t}[x] = ve^{(-1)·(b/m)·t}
Deducción:
m·d_{tt}^{2}[x] = m·d_{t}[ d_{t}[x] ] = m·d_{t}[ ve^{(-1)·(b/m)·t} ] = ...
... mv·d_{t}[ e^{(-1)·(b/m)·t} ] = mv·e^{(-1)·(b/m)·t}·(-1)·(b/m) = ...
... (-b)·ve^{(-1)·(b/m)·t} = (-b)·d_{t}[x]
U(x) = (-k)·(1/2)·x^{2}
(m/2)·d_{t}[x]^{2} = U(x)
Deducción:
U(x) = int[ (-k)·x ]d[x] = (-k)·int[ x ]d[x] = (-k)·(1/2)·x^{2}
(m/2)·d_{t}[x]^{2} = (m/2)·( i·(k/m)^{(1/2)}·re^{(k/m)^{(1/2)}·it} )^{2} = ...
... (-k)·(1/2)·( r^{2}·e^{(k/m)^{(1/2)}·2it} ) = (-k)·(1/2)·x^{2} = U(x)
N(d_{t}[x]) = (-b)·(1/2)·d_{t}[x]^{2}
(m/u)·d_{t}[x]^{[o(ut)o] 2} = N(d_{t}[x])
Deducción:
N(d_{t}[x]) = int[ (-b)·d_{t}[x] ]d[ d_{t}[x] ] = ...
... (-b)·int[ d_{t}[x] ]d[ d_{t}[x] ] = (-b)·(1/2)·d_{t}[x]^{2}
(m/u)·d_{t}[x]^{[o(ut)o] 2} = (m/u)·( ve^{(-1)·(b/m)·t} )^{[o(ut)o] 2} = ...
... (m/u)·int[ ( (-1)·(b/m)·v )^{2}·e^{(-2)·(b/m)·t} ]d[ut] = ...
... (-b)·(1/2)·( v^{2}·e^{(-2)·(b/m)·t} ) = (-b)·(1/2)·d_{t}[x]^{2} = N(d_{t}[x])
Fuerzas de amortiguación y de resistencia de fluido:
Vertical:
Ley:
m·d_{tt}^{2}[y] = (-k)·y+qg
y(t) = re^{(k/m)^{(1/2)}·it}+(1/k)·qg
Deducción:
m·d_{tt}^{2}[y] = m·d_{t}[ d_{t}[y] ] = m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it}+(1/k)·qg ] ] = ...
... m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ]+d_{t}[ (1/k)·qg ] ] = ...
... m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ]+0 ] = m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ] = ...
... m·d_{tt}^{2}[ re^{(k/m)^{(1/2)}·it} ] = (-k)·re^{(k/m)^{(1/2)}·it} = ...
... (-k)·re^{(k/m)^{(1/2)}·it}+(-1)·qg+qg = (-k)·( re^{(k/m)^{(1/2)}·it}+(1/k)·qg )+qg = (-k)·y+qg
Ley:
m·d_{tt}^{2}[y] = (-b)·d_{t}[y]+qg
d_{t}[y] = ve^{(-1)·(b/m)·t}+(1/b)·qg
Deducción:
m·d_{tt}^{2}[y] = m·d_{t}[ d_{t}[y] ] = m·d_{t}[ ve^{(-1)·(b/m)·t}+(1/b)·qg ] = ...
... m·( d_{t}[ ve^{(-1)·(b/m)·t} ]+d_{t}[ (1/b)·qg ] ) = ...
... m·( d_{t}[ ve^{(-1)·(b/m)·t} ]+0 ) = m·d_{t}[ ve^{(-1)·(b/m)·t} ] = (-b)·ve^{(-1)·(b/m)·t} = ...
... (-b)·ve^{(-1)·(b/m)·t}+(-1)·qg+qg = (-b)·( ve^{(-1)·(b/m)·t}+(1/b)·qg )+qg = (-b)·d_{t}[y]+qg
Obertura de hombros y caderas robótica:
Por amortiguador de retorno con empuje de obertura de fluido.
Ley:
m·d_{tt}^{2}[y] = (-k)·y+( sin(w)·qg+sin(s)·pg )
y(t) = re^{(k/m)^{(1/2)}·it}+(1/k)·( sin(w)·qg+sin(s)·pg )
Ley:
m·d_{tt}^{2}[y] = (-b)·d_{t}[y]+( sin(w)·qg+sin(s)·pg )
d_{t}[y] = ve^{(-1)·(b/m)·t}+(1/b)·( sin(w)·qg+sin(s)·pg )
Estiramiento de rodillas y codos robótica:
Por amortiguador de retorno con empuje de obertura de fluido.
Ley:
m·d_{tt}^{2}[y] = (-k)·y+( F+(-1)·qg )
y(t) = re^{(k/m)^{(1/2)}·it}+(1/k)·( F+(-1)·qg )
Ley:
m·d_{tt}^{2}[y] = (-b)·d_{t}[y]+( F+(-1)·qg )
d_{t}[y] = ve^{(-1)·(b/m)·t}+(1/b)·( F+(-1)·qg )
Motores robóticos que aumentan la fuerza según la carga:
Ley:
m·d_{tt}^{2}[y] = (-k)·y+( Itg+qg )
y(t) = re^{(k/m)^{(1/2)}·it}+(1/k)·( Itg+qg )
Ley:
m·d_{tt}^{2}[y] = (-b)·d_{t}[y]+( Itg+qg )
d_{t}[y] = ve^{(-1)·(b/m)·t}+(1/b)·( Itg+qg )+(-1)·(1/b)^{2}·Ig
----------------------------------------------
Procedimiento en coordenadas polares:
----------------------------------------------
Principio: [ de Inercia angular ]
[EI_{ck}][ mdx = sum[k = 1]-[n][ I_{ck} ] ]
[ d ] = ( metro / ( radian )^{2} )
Ley: [ de Impulsión angular ]
[EL_{k}][ md·d_{t}[x] = sum[k = 1]-[n][ L_{k} ] ]
Deducción:
d_{t}[ mdx ] = md·d_{t}[x] = md·d_{t}[x]
d_{t}[ sum[k = 1]-[n][ I_{ck} ] ] = sum[k = 1]-[n][ d_{t}[ I_{ck} ] ] = ...
... sum[k = 1]-[n][ L_{k} ]
Ley: [ de Fuerza angular ]
[EH_{k}][ md·d_{tt}^{2}[x] = sum[k = 1]-[n][ H_{k} ] ]
Deducción:
d_{t}[ md·d_{t}[x] ] = md·d_{t}[ d_{t}[x] ] = md·d_{tt}^{2}[x]
d_{t}[ sum[k = 1]-[n][ L_{k} ] ] = sum[k = 1]-[n][ d_{t}[ L_{k} ] ] = ...
... sum[k = 1]-[n][ H_{k} ]
Principio: [ de Energía angular ]
[EU_{k}][ I_{c}·(1/2)·d_{t}[w]^{2} = sum[k = 1]-[n][ U_{k} ] ]
Ley:
Sea U(w) = U ==>
Si I_{c} = M·(r/s)^{2} ==>
x(t) = (M/m)·(1/d)·(r/s)^{2}
w(t) = ( (2/M)·U )^{(1/2)}·(s/r)·t
Deducción:
mdx = M·(r/s)^{2}
I_{c}·(1/2)·d_{t}[w]^{2} = M·(r/s)^{2}·(1/2)·d_{t}[ ( (2/M)·U )^{(1/2)}·(s/r)·t ]^{2} = ...
... M·(r/s)^{2}·(1/2)·( ( (2/M)·U )^{(1/2)}·(s/r)·d_{t}[ t ] )^{2} = ...
... M·(r/s)^{2}·(1/2)·( ( (2/M)·U )^{(1/2)}·(s/r) )^{2} = U
Principio: [ Fundamental de la dinámica angular ]
[EM_{k}][ d_{w}[ U(w) ] = sum[k = 1]-[n][ M_{k} ] ]
[ M_{k} ] = ( Joule / Radian )
Ley:
L(t)·(1/2)·d_{t}[w]+I_{c}·d_{tt}^{2}[w] = sum[k = 1]-[n][ M_{k} ]
Deducción:
d_{w}[ I_{c}·(1/2)·d_{t}[w]^{2} ] = (1/d_{t}[w])·d_{t}[ I_{c}·(1/2)·d_{t}[w]^{2} ] ...
... (1/d_{t}[w])·( d_{t}[ I_{c} ]·(1/2)·d_{t}[w]^{2}+I_{c}·d_{t}[ (1/2)·d_{t}[w]^{2} ] ) = ...
... L(t)·(1/2)·d_{t}[w]+I_{c}·d_{tt}^{2}[w]
Ley: [ de Momento de Fuerza ]
Si d_{t}[ I_{c} ] = 0 ==>
[EM_{k}][ I_{c}·d_{tt}^{2}[w] = sum[k = 1]-[n][ M_{k} ] ]
Ley: [ de Momento de Impulsión ]
Si d_{t}[ I_{c} ] = 0 ==>
[EK_{k}][ I_{c}·d_{t}[w] = sum[k = 1]-[n][ K_{k} ] ]
Deducción:
int[ I_{c}·d_{tt}^{2}[w] ]d[t] = I_{c}·int[ d_{tt}^{2}[x] ]d[t] = I_{c}·d_{t}[w]
int[ sum[k = 1]-[n][ M_{k} ] ]d[t] = sum[k = 1]-[n][ int[ M_{k} ]d[t] ] = ...
... sum[k = 1]-[n][ K_{k} ]
Ley: [ de Potencia angular ]
Si d_{t}[ I_{c} ] = 0 ==>
[EN_{k}][ (I_{c}/u)·d_{t}[w]^{[o(ut)o] 2} = sum[k = 1]-[n][ N_{k} ] ]
Deducción:
int[ I_{c}·d_{tt}^{2}[w] ]d[ d_{t}[w] ] = int[ (I_{c}/u)·d_{tt}^{2}[w]^{2} ]d[ut] = ...
.. (I_{c}/u)·d_{t}[w]^{[o(ut)o] 2}
int[ sum[k = 1]-[n][ M_{k} ] ]d[ d_{t}[w] ] = sum[k = 1]-[n][ int[ M_{k} ]d[ d_{t}[w] ] ] = ...
... sum[k = 1]-[n][ N_{k} ]
Ley:
Si ( d_{t}[ I_{c} ] = 0 & M(w) = F·(x/s) ) ==>
d_{t}[w] = (1/I_{c})·F·(x/s)·t
w(t) = (1/I_{c})·F·(x/s)·(1/2)·t^{2}
Deducción:
Problema.
Ley:
Si ( d_{t}[ I_{c} ] = 0 & M(w) = F·(x/s) ) ==>
U(w) = F·(x/s)·w
I_{c}·d_{t}[w]^{2} = U(w)
Deducción:
U(w) = int[ M(w) ]d[w] = int[ F·(x/s) ]d[w] = F·(x/s)·int[ d[w] ] = F·(x/s)·w
(I_{c}/2)·d_{t}[w]^{2} = (I_{c}/2)·( (1/I_{c})·F·(x/s)·t )^{2} = ...
... F·(x/s)·( (1/I_{c})·F·(x/s)·(1/2)·t^{2} ) = F·(x/s)·w = U(w)
Ley:
Si ( d_{t}[ I_{c} ] = 0 & M(w) = F·(x/s) ) ==>
N(d_{t}[w]) = F·(x/s)·d_{t}[w]
(I_{c}/u)·d_{t}[w]^{[o(ut)o] 2} = N(d_{t}[w])
Deducción:
N(d_{t}[w]) = int[ M(w) ]d[ d_{t}[w] ] = int[ F·(x/s)·d_{tt}^{2}[w] ]d[t] = ...
... int[ (1/I_{c})·( F·(x/s) )^{2} ]d[t] = (1/I_{c})·( F·(x/s) )^{2}·int[ d[t] ] = ...
... (1/I_{c})·( F·(x/s) )^{2}·t = F·(x/s)·d_{t}[w]
(I_{c}/u)·d_{t}[w]^{[o(u)o] 2} = (I_{c}/u)·( (1/I_{c})·F·(x/s)·t )^{[o(ut)o] 2} = ...
... (I_{c}/u)·int[ ( (1/I_{c})·F·(x/s) )^{2} ]d[ut] = ...
...(1/I_{c})·( F·(x/s) )^{2}·int[ d[t] ] = (1/I_{c})·( F·(x/s) )^{2}·t = ...
... F·(x/s)·d_{t}[w] = N(d_{t}[w])
Inercias angulares constantes:
Principio:
[Ef][ I_{c} = int[ ( (r·f(n))/s )^{2}·d_{n}[m(n)] ]d[n] ]
Ley:
Si f(n) = n^{0} ==> I_{c} = int[ (r/s)^{2}·d_{n}[m(n)] ]d[n]
Si f(n) = (n/r) ==> I_{c} = int[ (n/s)^{2}·d_{n}[m(n)] ]d[n]
Principio:
[Ef][Eg][ I_{c} = int-int[ (1/2)·( ( (r·f(p))/s )^{2}+( (r·g(q))/s )^{2} )·d_{pq}^{2}[m(p,q)] ]d[p]d[q] ]
Ley:
Si ( f(p) = p^{0} & g(q) = q^{0} ) ==> I_{c} = int-int[ (r/s)^{2}·d_{pq}^{2}[m(p,q)] ]d[p]d[q]
Si ( f(p) = (p/r) & g(q) = (q/r) ) ==> ...
... I_{c} = int-int[ (1/2)·( (p/s)^{2}+(q/s)^{2} )·d_{pq}^{2}[m(p,q)] ]d[p]d[q]
Ley:
Sea ( U(w) = U & F(x) = int[ f(x) ]d[x] ) ==>
Si I_{c} = int[ (r/s)^{2}·Ma·f(an) ]d[n] ==>
I_{c} = (r/s)^{2}·M·F(an)
x(t) = (1/(md))·(r/s)^{2}·M·F(an)
w(t) = ( 2U )^{(1/2)}·(s/r)·( 1/(M·F(an)) )^{(1/2)}·t
K(t) = ( 2U )^{(1/2)}·(r/s)·( M·F(an) )^{(1/2)}
Ley:
Sea U(w) = U ==>
Si I_{c} = int[ (n/s)^{2}·Ma ]d[n] ==>
I_{c} = (1/3)·(n/s)^{2}·Man
x(t) = (1/(md))·(1/3)·(n/s)^{2}·Man
w(t) = ( 6U )^{(1/2)}·(s/n)·( 1/(Man) )^{(1/2)}·t
K(t) = ( 6U )^{(1/2)}·(1/3)·(n/s)·( Man )^{(1/2)}
Ley:
Sea ( U(w) = U & F(x) = int[ f(x) ]d[x] & G(x) = int[ g(x) ]d[x] ) ==>
Si I_{c} = int-int[ (r/s)^{2}·Ma^{2}·f(ap)·g(aq) ]d[p]d[q] ==>
I_{c} = (r/s)^{2}·M·F(ap)·G(aq)
x(t) = (1/(md))·(r/s)^{2}·M·F(ap)·G(aq)
w(t) = ( 2U )^{(1/2)}·(s/r)·( 1/(M·F(ap)·G(aq)) )^{(1/2)}·t
K(t) = ( 2U )^{(1/2)}·(r/s)·( M·F(an)·G(aq) )^{(1/2)}
Deducción:
I_{c} = int-int[ (r/s)^{2}·M·f(ap)·g(aq) ]d[ap]d[aq] = (r/s)^{2}·M·int-int[ f(ap)·g(aq) ]d[ap]d[aq] = ...
... (r/s)^{2}·M·int[ g(aq)·int[ f(ap) ]d[ap] ]d[aq] = (r/s)^{2}·M·int[ g(aq)·F(ap) ]d[aq] = ...
... (r/s)^{2}·M·F(ap)·int[ g(aq) ]d[aq] = (r/s)^{2}·M·F(ap)·G(aq)
Ley:
Sea ( U(w) = U & F(x) = int[ f(x) ]d[x] & G(x) = int[ g(x) ]d[x] ) ==>
Si I_{c} = int-int[ (r/s)^{2}·Ma^{2}·( f(ap)+g(aq) ) ]d[p]d[q] ==>
I_{c} = (r/s)^{2}·M·( F(ap)·aq+ap·G(aq) )
x(t) = (1/(md))·(r/s)^{2}·M·( F(ap)·aq+ap·G(aq) )
w(t) = ( 2U )^{(1/2)}·(s/r)·( 1/(M·( F(ap)·aq+ap·G(aq) )) )^{(1/2)}·t
K(t) = ( 2U )^{(1/2)}·(r/s)·( M·( F(ap)·aq+ap·G(aq) ) )^{(1/2)}
Ley:
Sea ( U(w) = U & p = r·sin(nw) & q = r·cos(nw) ) ==>
Si I_{c} = int-int[ (1/2)·( (p/s)^{2}+(q/s)^{2} )·Ma^{2} ]d[p]d[q] ==>
I_{c} = (r/s)^{2}·M·(1/4)·npi·(ar)^{2}
x(t) = (1/(md))·(r/s)^{2}·M·(1/4)·npi·(ar)^{2}
w(t) = ( (8/(npi))·U )^{(1/2)}·(s/r)·(1/(ar))·(1/M)^{(1/2)}·t
K(t) = ( (8/(npi))·U )^{(1/2)}·(r/s)·(ar)·M^{(1/2)}
Deducción:
d[p] = nr·cos(nw)·d[w] & d[q] = nr·(-1)·sin(nw)·d[w]
Sea ( U(w) = U & p = (r/i)·sinh(nw) & q = r·cosh(nw) ) ==>
Si I_{c} = int-int[ (1/2)·( (p/s)^{2}+(q/s)^{2} )·Ma^{2} ]d[p]d[q] ==>
I_{c} = (r/s)^{2}·M·(1/4)·npi·(ar)^{2}
Motores de rotación.
Ley:
Sea U(w) = U ==>
Si d[I_{c}] = (1/s)^{2}·Mrv·d[t] ==>
x(t) = (1/(md))·(1/s)^{2}·Mrvt
w(t) = ( (8/M)·(1/(rv))·U )^{(1/2)}·st^{(1/2)}
Ley:
Sea U(w) = U ==>
Si d[I_{c}] = (1/s)^{2}·Mrgt·d[t] ==>
x(t) = (1/(md))·(1/s)^{2}·Mrg·(1/2)·t^{2}
w(t) = ( (4/M)·(1/(rg))·U )^{(1/2)}·s·ln(ut)
Articulaciones robóticas y de vehículo.
Ley:
Sea U(w) = U ==>
Si d[L(t)] = (1/s)^{2}·Mv·d[x] ==>
x(t) = re^{(M/m)·(v/d)·(1/s)^{2}·t}
w(t) = ( (8/(mdr))·U )^{(1/2)}·(-1)·(m/M)·(d/v)·s^{2}·e^{(-1)·(1/2)·(M/m)·(v/d)·(1/s)^{2}·t}
Ley:
Sea U(w) = U ==>
Si d[L(t)] = (1/s)^{2}·Mg·d[tx] ==>
x(t) = re^{(M/m)·(g/d)·(1/s)^{2}·(1/2)·t^{2}}
w(t) = ( (8/(mdr))·U )^{(1/2)}·...
... ( (-1)·(m/M)·(d/g)·s^{2}·ln(ut) ) [o(t)o] e^{(-1)·(1/2)·(M/m)·(g/d)·(1/s)^{2}·(1/2)·t^{2}}
Ley:
Sea U(w) = U ==>
Si d[L(t)] = (1/s)^{2}·Mav·2x·d[x] ==>
x(t) = ( (-1)·(M/m)·(v/d)·(1/s)^{2}·at )^{(-1)}
w(t) = ( (2/(md))·U )^{(1/2)}·( (-1)·(M/m)·(v/d)·(1/s)^{2}·a )^{(1/2)}·(2/3)·t^{(3/2)}
Deducción:
d_{x}[ x^{2} ] = 2x
d_{x}[ x^{2} ]·d[x] = 2x·d[x]
d[ x^{2} ] = 2x·d[x]
L(t) = int[ d[L(t)] ] = int[ (1/s)^{2}·Mav·2x·d[x] ] = ...
... int[ (1/s)^{2}·Mav ]d[x^{2}] = (1/s)^{2}·Mav·int[ d[x^{2}] ] = (1/s)^{2}·Mavx^{2}
Ley:
Sea U(w) = U ==>
Si d[L(t)] = (1/s)^{2}·Mag·( d[t]·x^{2}+t·2x·d[x] ) ==>
x(t) = ( (-1)·(M/m)·(g/d)·(1/s)^{2}·a·(1/2)·t^{2} )^{(-1)}
w(t) = ( (2/(md))·U )^{(1/2)}·( (-1)·(M/m)·(g/d)·(1/s)^{2}·a·(1/2) )^{(1/2)}·(1/2)·t^{2}
Deducción:
d_{t}[ tx^{2} ] = d_{t}[t]·x^{2}+t·2x·d_{t}[x]
d_{t}[ tx^{2} ]·d[t] = ( d_{t}[t]·x^{2}+t·2x·d_{t}[x] )·d[t]
d[ tx^{2} ] = d[t]·x^{2}+t·2x·d[x]
L(t) = int[ d[L(t)] ] = int[ (1/s)^{2}·Mag·( d[t]·x^{2}+t·2x·d[x] ) ] = ...
... int[ (1/s)^{2}·Mag ]d[tx^{2}] = (1/s)^{2}·Mag·int[ d[tx^{2}] ] = (1/s)^{2}·Magtx^{2}
Ley: [ de rezo al Mal ]
Los hombres no están atacando,
a los xtraterrestres.
Los xtraterrestres no están atacando,
a los hombres.
Ley:
Se matan entre ellos en su mundo.
Cometen adulterio entre ellos en su mundo.
Principio:
U(x,y,z) = Potencial[ Q(x,y,z) ]
U(yz,zx,xy) = Anti-Potencial[ Q(yz,zx,xy) ]
Principio:
div-exp[ U(x,y,z) ] = sum[k = 1]-[3][ d_{xyz}^{3}[ e^{U_{k}(x,y,z)} ]
Si div-exp[ U(x,y,z) ] = 0 ==>
div-exp[ U(x,y,z) ] = d_{xyz}^{3}[ e^{sum[k = 1]-[3][ U_{k}(x,y,z) ]} ]
Principio:
Anti-div-exp[ U(yz,zx,xy) ] = sum[k = 1]-[3][ d_{kij}^{2}[ e^{U_{k}(yz,zx,xy)} ] ]
Si Anti-div-exp[ U(yz,zx,xy) ] = 0 ==>
Anti-div-exp[ U(yz,zx,xy) ] = d_{kij}^{2}[ e^{sum[k = 1]-[3][ U_{k}(yz,zx,xy) ]} ]
Ley:
Si Q(x,y,z) = U·< (1/x),(1/y),(1/z) > ==>
U(x,y,z) = U·( ln(ax)+ln(ay)+ln(az) )
div-exp[ U(x,y,z) ] = Ua^{3}
F(z) = int-int[ div-exp[ U(x,y,z) ] ]d[x]d[x]+int-int[ div-exp[ U(x,y,z) ] ]d[y]d[y] = ...
... Ua^{3}·(1/2)·( x^{2}+y^{2} )
Ley:
Si Q(yz,zx,xy) = U·< (1/(yz)),(1/(zx)),(1/(xy)) > ==>
U(yz,zx,xy) = U·( ln(byz)+ln(bzx)+ln(bxy) )
Anti-div-exp[ U(yz,zx,xy) ] = Ub^{3}·4xyz
F(z) = int-int[ Anti-div-exp[ U(yz,zx,xy) ] ]d[x]d[y]+int-int[ Anti-div-exp[ U(yz,zx,xy) ] ]d[y]d[x] = ...
... Ub^{3}·2z·(xy)^{2}
Ley:
Si Q(x,y,z) = aU·< ((y+z)/x),((z+x)/y),((x+y)/z) > ==>
U(x,y,z) = U·( (ay+az)·ln(ax)+(az+ax)·ln(ay)+(ax+ay)·ln(az) )
div-exp[ U(x,y,z) ] = Ua^{3}·( ...
... (ax)^{ay+az+(-1)}·ln(ax)·( 2+(ay+az)·ln(ax) )+...
... (ay)^{az+ax+(-1)}·ln(ay)·( 2+(az+ax)·ln(ay) )+...
... (az)^{ax+ay+(-1)}·ln(az)·( 2+(ax+ay)·ln(az) ) )
Ley:
E(x_{k}) = int-int[ div-exp[ U_{k}(x,y,z) ] ]d[(1/a)^{2}·(i+j)] = ...
... U·(ak)^{ai+aj+(-1)}·[o(ai+aj)o] ( 2+(1/2)·(ai+aj)·ln(ak) )·(ai+aj)
x_{k}(t) = ...
... (1/a)·Anti-[ ( s /o(s)o/ ...
... int[ (as)^{ai+aj+(-1)}·[o(ai+aj)o] ( 2+(1/2)·(ai+aj)·ln(as) )·(ai+aj) ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (2/m)·U )^{(1/2)}·at )
Deducción:
d_{ax}[ (ax)^{ay+az} ] = (ay+az)·(ax)^{ay+az+(-1)}
d_{ay}[ (ay+az)·(ax)^{ay+az+(-1)} ] = (ax)^{ay+az+(-1)}·( 1+ay·ln(ax)+az·ln(ax) )
d_{az}[ (ax)^{ay+az+(-1)}·( 1+(ay+az)·ln(ax) ) ] = (ax)^{ay+az+(-1)}·ln(ax)·( 2+(ay+az)·ln(ax) )
Ley:
Si Q(yz,zx,xy) = bU·< ((zx+xy)/(yz)),((xy+yz)/(zx)),((yz+zx)/(xy)) > ==>
U(yz,zx,xy) = U·( (bzx+bxy)·ln(byz)+(bxy+byz)·ln(bzx)+(byz+bzx)·ln(bxy) )
Anti-div-exp[ U(yz,zx,xy) ] = Ub·( ...
... (byz)^{bzx+bxy+(-1)}·(bz+by)·( 1+ln(byz) )+...
... (bzx)^{bxy+byz+(-1)}·(bx+bz)·( 1+ln(bzx) )+...
... (bxy)^{byz+bzx+(-1)}·(by+bx)·( 1+ln(bxy) ) )
Ley:
E(x_{k}) = int[ Anti-div-exp[ U_{k}(yz,zx,xy) ] ]d[(1/b)·k] = U·(bij)^{bik+bkj+(-1)}·( ( 1/ln(bij) )+1 )
x_{k}(t) = (a/b)·Anti-[ ( s /o(s)o/ int[ (bij)^{ais+asj+(-1)}·( ( 1/ln(bij) )+1 ) ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (2/m)·U )^{(1/2)}·(b/a)·t )
Deducción:
d_{byz}[ (byz)^{bzx+bxy} ] = (bzx+bxy)·(byz)^{bzx+bxy+(-1)}
d_{x}[ (bzx+bxy)·(byz)^{bzx+bxy+(-1)} ] = (byz)^{bzx+bxy+(-1)}·(bz+by)·( 1+ln(byz) )
Áreas y Volumenes:
Teorema:
x = r·cos(w)
y = r·sin(w)
d[x]d[y] = (1/2)·( d[x]d[y]+d[x]d[y] ) = ...
... (1/2)·( d_{r}[x]·d_{w}[y]+(-1)·d_{w}[x]·d_{r}d[y] )·d[r]d[w]
Teorema:
Área de un círculo:
A(r) = int[w = 0]-[2pi][ inr[r = 0]-[r][ r ]d[r] ]d[w] = ...
... int[w = 0]-[2pi][ (1/2)·r^{2} ]d[w] = (1/2)·r^{2}·int[w = 0]-[2pi][ d[w] ] = pi·r^{2}
Perímetro de un círculo:
B(r) = d_{r}[ A(r) ] = d_{r}[ pi·r^{2} ] = 2pi·r
Teorema:
Área de un sector circular:
A(r,w) = int[w = 0]-[w][ inr[r = 0]-[r][ r ]d[r] ]d[w] = ...
... int[w = 0]-[w][ (1/2)·r^{2} ]d[w] = (1/2)·r^{2}·int[w = 0]-[w][ d[w] ] = (1/2)·wr^{2}
Perímetro de un sector circular:
B(r,w) = d_{r}[ A(r,w) ] = d_{r}[ (1/2)·wr^{2} ] = wr
Teorema:
d[z] = r·sin(s)·d[s]
x = r·cos(2w)
y = r·sin(2w)
d[x]d[y]d[z] = (1/2)·( d[x]d[y]d[z]+d[x]d[y]d[z] ) = ...
... (1/2)·( d_{r}[x]·d_{w}[y]+(-1)·d_{w}[x]·d_{r}d[y] )·r·sin(s)·d[r]d[w]d[s] =
Teorema:
Volumen de una esfera:
A(r) = int[s = 0]-[pi][ int[w = 0]-[2pi][ int[r = 0]-[r][ r^{2}·sin(s) ]d[r] ]d[w] ]d[s] = ...
... int[s = 0]-[pi][ int[w = 0]-[2pi][ (1/3)·r^{3}·sin(s) ]d[w] ]d[s] = ...
... (1/3)·r^{3}·int[s = 0]-[pi][ sin(s)·int[w = 0]-[2pi][ d[w] ] ]d[s] = ...
... (1/3)·r^{3}·int[s = 0]-[pi][ sin(s)·2pi ]d[s] = (2/3)·pi·r^{3}·int[s = 0]-[pi][ sin(s) ]d[s] = ...
... (2/3)·pi·r^{3}·(-1)·( cos(pi)+(-1)·cos(0) ) = (4/3)·pi·r^{3}
Superficie de una esfera:
B(r) = d_{r}[ A(r) ] = d_{r}[ (4/3)·pi·r^{3} ] = 4pi·r^{2}
Teorema:
Volumen de un hemisferio:
A(r,w) = int[s = 0]-[pi][ int[w = 0]-[w][ int[r = 0]-[r][ r^{2}·sin(s) ]d[r] ]d[w] ]d[s] = ...
... int[s = 0]-[pi][ int[w = 0]-[w][ (1/3)·r^{3}·sin(s) ]d[w] ]d[s] = ...
... (1/3)·r^{3}·int[s = 0]-[pi][ sin(s)·int[w = 0]-[w][ d[w] ] ]d[s] = ...
... (1/3)·r^{3}·int[s = 0]-[pi][ sin(s)·w ]d[s] = (2/3)·wr^{3}·int[s = 0]-[pi][ sin(s) ]d[s] = ...
... (2/3)·wr^{3}·(-1)·( cos(pi)+(-1)·cos(0) ) = (2/3)·wr^{3}
Superficie de un hemisferio:
B(r,w) = d_{r}[ A(r,w) ] = d_{r}[ (2/3)·wr^{3} ] = 2wr^{2}
--------------------------------
Mecánica Teórica y Ondas:
--------------------------------
Teorema:
Sea d_{x}[F(x)] = f(x) ==>
d_{x}[ Anti-[F(s)]-(x) ] = ( 1/f( Anti-[F(s)]-(x) ) )
Demostración:
d_{y}[ Anti-[F(s)]-( F(y) ) ] = d_{y}[y] = 1
d[ Anti-[F(s)]-( F(y) ) ] = d[y]
d_{F(y)}[ Anti-[F(s)]-( F(y) ) ] = d_{F(y)}[y] = ( 1/d_{y}[F(y)]) = ( 1/f(y) )
Sea y = Anti-[F(s)]-(x) ==>
d_{F( Anti-[F(s)]-(x) )}[ Anti-[F(s)]-( F( Anti-[F(s)]-(x) ) ) ] = ( 1/f( Anti-[F(s)]-(x) ) )
Teorema:
Sea d_{x}[F(x)] = f(x) ==>
d_{x}[ Anti-[( s /o(s)o/ F(s) )]-(x) ] = f( Anti-[( s /o(s)o/ F(s) )]-(x) )
Demostración:
d_{x}[ Anti-[( s /o(s)o/ F(s) )]-(x) ] = ( 1/( 1/f( Anti-[( s /o(s)o/ F(s) )]-(x) ) ) ) = ...
... f( Anti-[( s /o(s)o/ F(s) )]-(x) )
Teorema:
d_{x}[ arc-sin(x) ] = ( 1/(1+(-1)·x^{2})^{(1/2)} )
Demostración:
d_{x}[ arc-sin(x) ] = ( 1/cos( arc-sin(x) ) ) = ( 1/(1+(-1)·(sin( arc-sin(x) ))^{2})^{(1/2)} )
Teorema:
d_{x}[ arc-cos(x) ] = (-1)·( 1/(1+(-1)·x^{2})^{(1/2)} )
Demostración:
d_{x}[ arc-cos(x) ] = (-1)·( 1/sin( arc-cos(x) ) ) = ( 1/(1+(-1)·(cos( arc-cos(x) ))^{2})^{(1/2)} )
Racionamiento antiguo:
Teorema:
d_{x}[ e^{x} ] = e^{x}
Demostración:
d_{x}[ e^{x} ] = ( 1/(1/y) ) = y = e^{x}
Teorema:
d_{x}[ ln(x) ] = (1/x)
Demostración:
d_{x}[ ln(x) ] = ( 1/e^{y} ) = ( 1/e^{ln(x)} ) = (1/x)
Teorema:
Sea x(t) = Anti-[ ( s /o(s)o/ int[ F(s) ]d[s] )^{[o(s)o] (1/2)} ]-( 2^{(1/2)}·ut ) ] ==>
(1/2)·d_{t}[x(t)]^{2} = F(s)·u^{2}
d_{tt}^{2}[x(t)] = (1/2)·( F(s) )^{(-1)·(1/2)}·f(s)·( F(s) )^{(1/2)}·2u^{2} = f(s)·u^{2}
Demostración:
d_{t}[ F(s) ] = d_{s}[F(s)]·d_{t}[s]
Teorema:
Sea x(t) = Anti-[ ( s /o(s)o/ int[ H(ut) [o(ut)o] F(s) ]d[s] )^{[o(s)o] (1/2)} ]-( 2^{(1/2)}·ut ) ] ==>
(1/2)·d_{t}[x(t)]^{2} = ( H(ut) [o(ut)o] F(s) )·u^{2}
d_{tt}^{2}[x(t)] = ...
... (1/2)·( H(ut) [o(ut)o] F(s) )^{(-1)·(1/2)}·h(ut)·f(s)·( H(ut) [o(ut)o] F(s) )^{(1/2)}·2u^{2} = ...
... h(ut)·f(s)·u^{2}
Demostración:
u·d_{ut}[ H(ut) [o(ut)o] F(s) ] = u·d_{ut}[H(ut)]·d_{ut}[F(s)] = ...
... u·h(ut)·d_{s}[F(s)]·d_{ut}[s] = h(ut)·d_{s}[F(s)]·d_{t}[s]
Teorema:
Sea x(t) = Anti-[ ( s /o(s)o/ int[ (ut) [o(ut)o] F(s) ]d[s] )^{[o(s)o] (1/2)} ]-( 2^{(1/2)}·ut ) ] ==>
(1/2)·d_{t}[x(t)]^{2} = ( (ut) [o(ut)o] F(s) )·u^{2}
d_{tt}^{2}[x(t)] = ...
... (1/2)·( (ut) [o(ut)o] F(s) )^{(-1)·(1/2)}·f(s)·( (ut) [o(ut)o] F(s) )^{(1/2)}·2u^{2} = f(s)·u^{2}
Ley:
d[H(t)] = (1/pi)^{2}·MgI·d[tx]
x(t) = (1/a)·Anti-[ ( s /o(s)o/ int[ (1/2)·(ut)^{2} [o(ut)o] (1/2)·s^{2} ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( 2·(M/m)·gI·(1/u)·(1/d) )^{(1/2)}·(1/pi)·t )
Deducción:
H(t) = int[ d[H(t)] ] = int[ (1/pi)^{2}·MgI ]d[tx] = (1/pi)^{2}·MgI·int[ d[tx] ] = (1/pi)^{2}·MgItx
md·d_{tt}^{2}[x] = (1/pi)^{2}·MgItx
md·d_{tt}^{2}[x]·d[x] = (1/pi)^{2}·MgI·(1/u)·(ut)·x·d_{ut}[x]·d[ut]
md·(1/2)·d_{t}[ax]^{2} = (1/pi)^{2}·MgI·(1/u)·(1/2)·(ut)^{2} [o(ut)o] (1/2)·(ax)^{2}
Ley:
d[H(t)] = (1/pi)^{2}·Mv·d[(1/t)·x]
x(t) = (1/a)·Anti-[ ( s /o(s)o/ int[ ln(ut) [o(ut)o] (1/2)·s^{2} ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( 2·(M/m)·(vu)·(1/d) )^{(1/2)}·(1/pi)·t )
Deducción:
H(t) = int[ d[H(t)] ] = int[ (1/pi)^{2}·Mv ]d[(1/t)·x] = (1/pi)^{2}·Mv·int[ d[(1/t)·x] ] = ...
... (1/pi)^{2}·Mv·(1/t)·x
md·d_{tt}^{2}[x] = (1/pi)^{2}·Mv·(1/t)·x
md·d_{tt}^{2}[x]·d[x] = (1/pi)^{2}·Mvu·(1/(ut))·x·d_{ut}[x]·d[ut]
md·(1/2)·d_{t}[ax]^{2} = (1/pi)^{2}·Mvu·ln(ut) [o(ut)o] (1/2)·(ax)^{2}
Ley:
Le tenéis que decir a Esquerra Republicana,
que queréis el título de la universidad de Stroniken como el mío,
enseñando el testimonio de uno mismo con Dios,
escrito con vuestra letra:
Jûan Garriga Peralta-Peraltotzak:
Filósofo de la ciencia matemática y de la ciencia lógica,
por la universidad de Stroniken.
Y que vos lo envíen.
Ley: [ de onda electro-magnética plana de superficie ]
Lap[ E_{e}(x,y,t) ] = (-2)·(1/c)^{2}·d_{tt}^{2}[ int[ B_{e}(x,y,t) ]d[t] ]
Deducción:
E_{e}(x,y,t)+int[ B_{e}(x,y,t) ]d[t] = 0 = m·d_{tt}^{2}[ < x,y > ]
x(t) = ct·cos(w)
y(t) = ct·sin(w)
Lap[ int[ B_{e}(x,y,t) ]d[t] ] = ...
... ( 1/(d[x]^{2}+d[y]^{2}) )·(d[x]^{2}+d[y]^{2}) [o] Lap[ int[ B_{e}(x,y,t) ]d[t] ]
Lap[ E_{e}(x,y,t) ]+Lap[ int[ B_{e}(x,y,t) ]d[t] ]= 0^{3}
Lap[ E_{e}(x,y,t) ]+2·(1/c)^{2}·d_{tt}^{2}[ int[ B_{e}(x,y,t) ]d[t] ] = 0^{3}
Lap[ E_{e}(x,y,t) ] = (-2)·(1/c)^{2}·d_{tt}^{2}[ int[ B_{e}(x,y,t) ]d[t] ]
Ley: [ de onda gravito-magnética plana de superficie ]
Lap[ int[ B_{g}(x,y,t) ]d[t] ] = (-2)·(1/c)^{2}·d_{tt}^{2}[ E_{g}(x,y,t) ]
Deducción:
int[ B_{g}(x,y,t) ]d[t]+E_{g}(x,y,t) = 0 = m·d_{tt}^{2}[ < x,y > ]
x(t) = ct·cos(w)
y(t) = ct·sin(w)
Lap[ E_{g}(x,y,t) ] = ( 1/(d[x]^{2}+d[y]^{2}) )·(d[x]^{2}+d[y]^{2}) [o] Lap[ E_{g}(x,y,t) ]
Lap[ int[ B_{g}(x,y,t) ]d[t] ]+Lap[ E_{g}(x,y,t) ] = 0^{3}
Lap[ int[ B_{g}(x,y,t) ]d[t] ]+2·(1/c)^{2}·d_{tt}^{2}[ E_{g}(x,y,t) ] = 0^{3}
Lap[ int[ B_{g}(x,y,t) ]d[t] ] = (-2)·(1/c)^{2}·d_{tt}^{2}[ E_{g}(x,y,t) ]
Ecuaciones de ondas elípticas planas de superficie:
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,t) = (1/2)·( ...
... e^{ax+ay+acit || ln( H(ax,ay) )+act}+...
... e^{ax+ay+acit || ln( H(ax,ay) )+(-1)·act} )
u(x,y,0) = H(ax,ay)
d_{t}[ u(x,y,0) ] = 0
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,t) = sum[k = 1]-[oo][ ...
... int[h(ax,ay)+(-1)·(1/2)·act·0 || (2t)^{(1/2)}]-[h(ax,ay)+(1/2)·act·0 || (2t)^{(1/2)}][ w ]d[w] ]·...
... e^{ax+ay+acit || 0}
u(x,y,0) = 0
d_{t}[ u(x,y,0) ] = ac·h(ax,ay)
Ecuaciones de ondas hiperbólicas planas de superficie:
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,t) = (1/2)·( ...
... e^{ax+ay+act || ln( H(ax,ay) )+act}+...
... e^{ax+ay+act || ln( H(ax,ay) )+(-1)·act} )
u(x,y,0) = H(ax,ay)
d_{t}[ u(x,y,0) ] = 0
Teorema:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,t) = sum[k = 1]-[oo][ ...
... int[h(ax,ay)+(-1)·(1/2)·act·0 || (2t)^{(1/2)}]-[h(ax,ay)+(1/2)·act·0 || (2t)^{(1/2)}][ w ]d[w] ]·...
... e^{ax+ay+act || 0}
u(x,y,0) = 0
d_{t}[ u(x,y,0) ] = ac·h(ax,ay)
Ley:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,t) = E_{e}·(1/2)·( ...
... e^{ax+ay+acit || ln( (ax)^{2}+(ay)^{2} )+act}+...
... e^{ax+ay+acit || ln( (ax)^{2}+(ay)^{2} )+(-1)·act} )
u(x,y,0) = (ax)^{2}+(ay)^{2}
d_{t}[ u(x,y,0) ] = 0
Ley:
d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]
u(x,y,t) = E_{e}·sum[k = 1]-[oo][ ...
... int[(ax+ay)+(-1)·act·0 || (2t)^{(1/2)}]-[(ax+ay)+act·0 || (2t)^{(1/2)}][ w ]d[w] ]·...
... e^{ax+ay+acit || 0}
u(x,y,0) = 0
d_{t}[ u(x,y,0) ] = 2ac·(ax+ay)
jueves, 16 de octubre de 2025
producto-tensorial y teoría-de-juegos-en-economía-y-física y análisis-matemático-5 y mecánica-momento-de-inercia
Teorema:
A = k·( < a,0 > % < 0,a >)
B = k·( < a,0 > % < 0,(-a) >)
dim(A) = (1/2)
dim(B) = (1/2)
( < a,0 > % < 0,0 >) = (1/2)·( < a,0 > % < 0,a >)+(1/2)·( < a,0 > % < 0,(-a) >)
Lema: [ de gasto en defensa ]
PIB por cápita 8,400€
inversión del 5%:
(1/20)·32,000+20·1,600 = 33,600€ por cada 4 catalanohablantes.
Compra de armamento de 32,700€ por pack militar:
misil o torpedo o caja de proyectiles de cañón.
Lema:
Estrategia ganadora de venta,
del supremo o igual:
Make America empate again.
h(1) = 32,700€
F(1,1) = 1·1+(1+1) = 3
Estrategia ganadora de no venta,
del ínfimo o igual:
Make America first again.
h(2) = 65,400€
F(2,0) = 2·0+(2+0) = 2
Estrategias perdedoras:
h(1/2) = 16,350€
h(3/2) = 49,050€
F((1/2),(3/2)) = (3/4)+((1/2)+(3/2)) = (2.75)
F((3/2),(1/2)) = (3/4)+((3/2)+(1/2)) = (2.75)
Ley:
Hay gente que no es,
que no hay condenación.
Hay gente que es,
que hay condenación.
Deducción: [ por teoría de juegos ]
Jugadas ganadoras:
Joder a un esclavo infiel:
F(1,(-1)) = (-1)+(1+(-1)) = (-1)
F(2,(-1)) = (-2)+(2+(-1)) = (-1)
Jugadas perdedoras:
Joder a un señor fiel:
F(1,(-2)) = (-2)+(1+(-2)) = (-3)
F(2,(-2)) = (-4)+(2+(-2)) = (-4)
Ley:
Solo se puede conquistar con victoria,
haciendo que los infieles del Gestalt ignoren a los señores.
Solo se puede liberar con victoria,
no haciendo que los fieles del Gestalt ignoren a los señores.
Deducción: [ por teoría de juegos ]
Jugada ganadora:
Ignorar los infieles del Gestalt a los señores:
F(0,(-1)) = 0+(0+(-1)) = (-1)
Los infieles joden a infieles.
Jugada perdedora:
Ignorar los fieles del Gestalt a los señores:
F(0,(-2)) = 0+(0+(-2)) = (-2)
Los infieles joden a fieles.
Dual por dual de sabor:
Basik-kowetch-tate oil.
Acid-kowetch-tate wine.
Teorema:
int[x = 0]-[ln(oo)][ e^{(-1)·x^{n}} ]d[x] = (1/n!)
Teorema:
int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-x)} ]d[x] = m!
int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-1)·x^{n}} ]d[x] = (m!/n!)
Teorema:
int[x = 0]-[ln(oo^{(1/m)+1})][ x^{(1/m)}·e^{(-x)} ]d[x] = m
int[x = 0]-[ln(oo^{(1/m)+1})][ x^{(1/m)}·e^{(-1)·x^{n}} ]d[x] = m·( m!/(mn)! )
Demostración:
m = 0 & n = 1
int[x = 0]-[ln(oo)][ e^{(-1)·x} ]d[x] = [ (-1)·e^{(-1)·x} ]_{x = 0}^{x = ln(oo)} = 1
m = 1 & n = 1
int[x = 0]-[ln(oo^{2})][ xe^{(-1)·x} ]d[x] = ...
... [ (-1)·xe^{(-1)·x} ]_{x = 0}^{x = ln(oo^{2})}+[ (-1)·e^{(-1)·x} ]_{x = 0}^{x = ln(oo)} = 1
Teorema:
ln( (p+1)^{oo} ) = ( oo·log_{p+1}(2^{p}) )·ln(p+1) = ln(2^{p})·oo = ln(oo^{p})
Arte:
[En][ int[x = 0]-[ln(oo)][ e^{(-1)·x^{n}} ]d[x] = (1/n) ]
Exposición:
n = 1
Se define H(t) = int[x = 0]-[ln(oo)][ e^{(-1)·x^{n}·F(t)} ]d[x] ==>
d_{t}[H(t)] = f(t)·int[x = 0]-[ln(oo)][ (-1)·x^{n}·e^{(-1)·x^{n}·F(t)} ]d[x]
F(t) = x
d_{t}[H(t)] = d_{t}[x]·( 1/(n+1) )·(-1)
H(t) = x·( 1/(n+1) )·(-1) = F(t)·( 1/(n+1) )·(-1)
H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) )·( 1/(n+1) )·(-1) = ( 1/(n+1) )·(-1)
u(1) = (1/n)
v(1/n) = 0
H( F^{o(-1)}(1) ) = ( 1/(n+u(1)) )·(-1)^{u(1)} = ( 1/(n+v(1/n)) )·(-1)^{v(1/n)} = (1/n)
Arte:
[En][Em][ int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-1)·x^{n}} ]d[x] = ( 1/(m+n) ) ]
Exposición:
m = 0 & n = 1
Se define H(t) = int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-1)·x^{n}·F(t)} ]d[x] ==>
d_{t}[H(t)] = f(t)·int[x = 0]-[ln(oo^{m+1})][ (-1)·x^{m+n}·e^{(-1)·x^{n}·F(t)} ]d[x]
F(t) = x^{m+1}
d_{t}[H(t)] = (m+1)·x^{m}·d_{t}[x]·( 1/(m+n+1) )·(-1)
H(t) = x^{m+1}·( 1/(m+n+1) )·(-1) = F(t)·( 1/(m+n+1) )·(-1)
H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) )·( 1/(m+n+1) )·(-1) = ( 1/(m+n+1) )·(-1)
u(1) = (1/n)
v(1/n) = 0
H( F^{o(-1)}(1) ) = ( 1/(m+n+u(1)) )·(-1)^{u(1)} = ( 1/(m+n+v(1/n)) )·(-1)^{v(1/n)} = ( 1/(m+n) )
Teorema:
int[x = 0]-[oo][ ( sin(nx)/(nx) ) ]d[x] = (pi/n)
Demostración:
Se define H(t) = int[x = 0]-[oo][ e^{(-1)·(nxt)}·( sin(nx)/(nx) ) ]d[x] ==>
y = nx & d[y] = n·d[x]
H(t) = (1/n)·int[y = 0]-[oo][ e^{(-1)·(yt)}·( sin(y)/y ) ]d[y]
d_{t}[H(t)] = (-1)·(1/n)·int[y = 0]-[oo][ e^{(-1)·(yt)}·sin(y) ]d[y]
d_{t}[H(t)] = (-1)·(1/n)·( 1/(t^{2}+1) )
H(t) = (-1)·(1/n)·arc-tan(t)
H(0) = (-1)·(1/n)·(-pi) = (pi/n)
Teorema:
int[x = 0]-[oo][ ( cos(x/n)/x ) ]d[x] = ln(n)
Demostración:
Se define H(t) = int[x = 0]-[oo][ e^{(-1)·(xt)}·( cos(x/n)/x ) ]d[x] ==>
H(t) = int[x = 0]-[oo][ e^{(-1)·(xt)}·( cos(x/n)/x ) ]d[x]
d_{t}[H(t)] = (-1)·int[x = 0]-[oo][ e^{(-1)·(xt)}·cos(x/n) ]d[x]
d_{t}[H(t)] = (-1)·( t/(t^{2}+(1/n)^{2}) )
H(t) = (-1)·(1/2)·ln(t^{2}+(1/n)^{2})
H(0) = (-1)·(1/2)·2·ln(1/n) = ln(n)
Teorema:
int[x = ln(0)]-[0][ int[y = ln(0)]-[0][ e^{(-1)·( x^{n}+y^{n} )} ]d[y] ]d[x] = (1/n!)^{2}
Demostración:
e^{(-1)·( x^{n}+y^{n} )} [o(x || y)o] ( x /o(x || y)o/ x^{n} ) [o(x || y)o] ( y /o(x || y)o/ y^{n} )
Teorema:
int[x = 0]-[ln(oo)][ e^{(-1)·x^{2}} ]d[x] = (1/2!)
Demostración:
int[w = 0]-[2pi][ int[r = 0]-[oo][ e^{(-1)·r^{2}}·(1/4)·2r ]d[r] ]d[w] = (pi/2)
(-1)·e^{(-1)·r^{2}}·(1/4)·w = (-1)·e^{(-1)·( x^{2}+y^{2} )}·(1/4)·arc-tan(x/y)
arc-tan(0/oo)+(-1)·arc-tan(0/(-oo)) = 2pi
arc-tan(oo/(-oo)) = arc-tan(oo·(-0)) = arc-tan(oo·0) = arc-tan(oo/oo)
e^{(-1)·( x^{2}+y^{2} )}·(1/4)·8pi = (pi/2)
4 veces el cuadrante de la exponencial y valores convergentes de arco-tangente.
Teorema:
int[x = 0]-[pi][ e^{(-1)·( sin(x) )^{n}} ]d[x] = (2/n!)
Demostración:
int[x = 0]-[pi][ e^{(-1)·( sin(x) )^{n}}·( 1/d_{x}[sin(x)] ) ]d[sin(x)] = ...
... (-1)·e^{(-1)·( sin(x) )^{n}} [o(sin(x))o] ( sin(x) /o(sin(x))o/ ( sin(x) )^{n} )·( 1/cos(x) )
Teorema:
int[x = (-1)·(pi/2)]-[(pi/2)][ e^{(-1)·( cos(x) )^{n}} ]d[x] = (2/n!)
Demostración:
int[x = (-1)·(pi/2)]-[(pi/2)][ e^{(-1)·( cos(x) )^{n}}·( 1/d_{x}[cos(x)] ) ]d[cos(x)] = ...
... e^{(-1)·( cos(x) )^{n}} [o(cos(x))o] ( cos(x) /o(cos(x))o/ ( cos(x) )^{n} )·( 1/sin(x) )
Teorema:
int[x = (-oo)]-[oo][ ln(x^{n}+1) ]d[x] = n·( ln(2)+pi·i )
Área positiva > 1 + Área negativa < 1 = a la integral impropia
Verificación del método de Euler por Hôpital-Garriga:
( ln(x^{n}+1)+(-1) )·(x^{n}+1) [o(x)o] ( x /o(x)o/ (x^{n}+1) ) = ...
( ln(x^{n}+1)+(-1) )·(w^{n}+1) [o(x)o] ( w /o(x)o/ (w^{n}+1) ) = ...
( ln(x^{n}+1)+(-1) ) [o(x)o] ( 1 /o(x)o/ 1 ) = [ ln(x^{n}+1)+(-1) ]_{x = (-oo)}^{x = oo}
Demostración:
Se define H(t) = int[x = (-oo)]-[oo][ ln( (xF(t))^{n}+1 ) ]d[x] ==>
d_{t}[H(t)] = f(t)·int[x = (-oo)]-[oo][ ( 1/( (xF(t))^{n}+1 ) )·n·( xF(t) )^{n+(-1)}·x ]d[x]
F(t) = x
d_{t}[H(t)] = d_{t}[x]·int[x = (-oo)]-[oo][ ( 1/(x^{2n}+1) )·nx^{2n+(-1)} ]d[x]
d_{t}[H(t)] = d_{t}[x]·(1/2)·( ln(oo^{2n}+1) )+(-1)·ln((-oo)^{2n}+1) )
d_{t}[H(t)] = d_{t}[x]·(1/2)·2n·( ln(oo)+(-1)·ln(oo)+pi·i ) = d_{t}[x]·n·( ln(2)+pi·i )
H(t) = x·n·( ln(2)+pi·i ) = F(t)·n·( ln(2)+pi·i )
H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) ) n·( ln(2)+pi·i ) = n·( ln(2)+pi·i )
Arte:
[En][ int[x = (-1)]-[1][ ( 1/(x^{n}+(-1)) ) ]d[x] = (2/n) ]
Exposición:
n = 0
Se define H(t) = int[x = (-1)]-[1][ ( 1/( (xF(t))^{n}+(-1) ) ) ]d[x] ==>
d_{t}[H(t)] = f(t)·int[x = (-1)]-[1][ (-1)·( 1/( (xF(t))^{n}+(-1) ) )^{2}·n·( xF(t) )^{n+(-1)}·x ]d[x]
F(t) = x
d_{t}[H(t)] = d_{t}[x]·int[x = (-1)]-[1][ (-1)·( 1/(x^{2n}+(-1)) )^{2}·nx^{2n+(-1)} ]d[x]
d_{t}[H(t)] = d_{t}[x]·(1/2)·( oo+(-oo) ) = d_{t}[x]·(1/2)
H(t) = x·(1/2) = F(t)·(1/2)
u(1) = m
v(m) = (4/n)
H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) )·(1/2) = (1/2)·u(1) = (1/2)·v(m) = (2/n)
Momento de inercia Wronskiano:
Ley:
Sea ( x = a·cos(ut) & y = b·sin(ut) ) ==>
M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·ab·(ut)
Ley:
M·ab·(ut)·(1/2)·d_{t}[w]^{2} = E·H(w)
w(t) = Anti-[ ( int[ (ut) ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ( (2/M)·(1/(ab) )·E )^{(1/2)}·t )
Ley:
Sea ( x = vt & y = g·(1/2)·t^{2} ) ==>
M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·vg·(1/u)^{3}·(1/6)·(ut)^{3}
Ley:
M·vg·(1/u)^{3}·(ut)^{3}·(1/12)·d_{t}[w]^{2} = E·H(w)
w(t) = Anti-[ ( int[ (ut)^{3} ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (12/M)·(1/(vg) )·u^{3}·E )^{(1/2)}·t )
Ley:
Sea ( x = vt & y = re^{ut+(-1)} ) ==>
M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·vr·(1/u)·(ut+(-1))^{2}·er-h[2]( ut+(-1) )
Ley:
M·vr·(1/u)·(ut+(-1))^{2}·er-h[2]( ut+(-1) )·(1/2)·d_{t}[w]^{2} = E·H(w)
w(t) = Anti-[ ( int[ (ut+(-1))^{2}·er-h[2]( ut+(-1) ) ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (2/M)·(1/(vr) )·uE )^{(1/2)}·t )
Ley:
Sea ( x = r·ln(ut) & y = vt ) ==>
M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·vr·(1/u)·(ut)·( ln(ut)+(-2) )
Ley:
M·vr·(1/u)·(ut)·( ln(ut)+(-2) )·(1/2)·d_{t}[w]^{2} = E·H(w)
w(t) = Anti-[ ( int[ (ut)·( ln(ut)+(-2) ) ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (2/M)·(1/(vr) )·uE )^{(1/2)}·t )
Ley:
Sea d_{t}[x] = ru·(ut+e)^{sin(ut+(pi/2))} ==>
d_{tt}^{2}[x] = ru^{2}·(ut+e)^{sin(ut+(pi/2))}·( cos(ut+(pi/2))·ln(ut+e)+sin(ut+(pi/2))·(1/(ut+e)) )
x(t) = r·(ut+e)^{sin(ut+(pi/2))} [o(ut)o] ( ut /o(ut)o/ sin(ut+(pi/2))·ln(ut+e) )
x(0/u) = re
d_{t}[x(0/u)] = rue
d_{tt}^{2}[x(0/u)] = ru^{2}
Deducción:
ln(f(z)) = ln(g(z)^{h(z)}) = h(z)·ln(g(z))
d_{z}[f(z)] = f(z)·d_{z}[ h(z)·ln(g(z)) ]
Ley:
La verdad implica la felicidad.
La falsedad implica el sufrimiento.
Deducción:
Creer-se una verdad es jugada ganadora:
F(n,1) = n·1+(n+1) = 2n+1
Creer-se una falsedad es jugada perdedora:
F(n,0) = n·0+(n+0) = n
n [< n+n = 2n < 2n+1
Ley:
Un heterosexual que es,
no puede ser homosexual que no es.
Un homosexual que no es,
no puede ser heterosexual que es.
I havere-kate-kute maket-tikaletch-tuted a coment saksahuaketch-kán,
of yu tenotitch-lán.
Yu havere-kate-kute maket-tikaletch-tuted a coment saksahuaketch-kán,
of me tenotitch-lán.
El American-Quetchua tiene 7 dialectos:
Centro americano:
-tikaletch-kal
Sur americano hawsnutch:
-tikaletch-tate
-tikaletch-tute
-tikalet-kazhe
-tikalet-kuzhe
gwzenen plana
-tikalet-huw
yuhened plana
-tikalet-shuw
yushened plana
Ley:
Sea I_{c}·(1/2)·d_{t}[w]^{2} = E·H(w) ==>
Si d[ d[I_{c}] ] = Mrv·d[w]d[t] ==>
w(t) = Anti-[ ( ( (1/2)·s^{2} [o(s)o] int[ (ut) ]d[s] ) /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (2/M)·(1/(rv))·uE )^{(1/2)}·t )
Ley:
Sea I_{c}·(1/2)·d_{t}[w]^{2} = E·H(w) ==>
Si d[ d[I_{c}] ] = Mrgt·d[w]d[t] ==>
w(t) = Anti-[ ( ( (1/2)·s^{2} [o(s)o] int[ (ut)^{2} ]d[s] ) /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (4/M)·(1/(rg))·E )^{(1/2)}·ut )